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We study the critical behavior of period doubling in two coupled one-dimensional maps with
a single maximum of order z. In particular, the effect of the maximum-order z on the critical
behavior associated with coupling is investigated by a renormalization method. There exist three
fixed maps of the period-doubling renormalization operator. For a fixed map associated with the
critical behavior at the zero-coupling critical point, relevant eigenvalues associated with coupling
perturbations vary, depending on the order z, whereas they are independent of z for the other two
fixed maps. The renormalization results for the zero-coupling case are also confirmed by a direct

numerical method.
PACS number(s): 05.45.+b, 03.20.+i, 05.70.Jk

Universal scaling behavior of period doubling has been
found in one-dimensional (1D) maps with a single maxi-
mum of order z (z > 1),

Tiy1 = f(z:) =1- A |z,

For all z > 1, the 1D map (1) exhibits successive period-
doubling bifurcations as the nonlinearity parameter A
is increased. The period-doubling bifurcation points
A = A,(z) (n = 0,1,2,...), at which the nth period-
doubling bifurcation occurs, converge to the accumula-
tion point A*(2) on the A axis. The scaling behavior near
the critical point A* depends on the maximum-order z,
i.e., the parameter and orbital scaling factors, 6 and a,
vary depending on z [1-4]. Therefore the order z deter-
mines universality classes.

Here we study the critical behavior of period doubling
in a map T consisting of two identical 1D maps coupled
symmetrically:

) ziv1 = F(zi,u:) = f(z:) + 9(=4, ),
T: { yi—_:l = F(yi, i) = f(y:) + 9(vi, %), @

z> 1. (1)

where f(z) is a 1D map (1) with a single maximum of
even-order z (z = 2,4,6,...) at ¢ = 0, and g(z,y) is
a coupling function. The uncoupled 1D map f satisfies
a normalization condition f(0) = 1, and the coupling
function g obeys a condition g(z,z) = 0 for any z.

The quadratic-maximum case (z = 2) was previously
studied in Refs. [5-9]. In this paper, using the renor-
malization method developed in Ref. [9], we extend the
results for the z = 2 case to all even-order cases and inves-
tigate the dependence of the critical behavior associated
with coupling on the order z.

The period-doubling renormalization transformation
N for a coupled map T consists of squaring (7?) and
rescaling (B) operators:

N(T)=BT?*B™ L. (3)

Here the rescaling operator B is:
a 0
5=(5 o) ()
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because we consider only in-phase orbits (z; = y; for all

i).

Applying the renormalization operator N to the cou-
pled map (2) n times, we obtain the n-times renormalized
map T, of the form,

| ziv1 = Fa(zi,9:) = fa(2) + gn(z,v),
T { y:l = Fa(yi, zi) = fa(y) + 9a(y, 2). ®)

Here f,, and g,, are the uncoupled and coupling parts of
the n-times renormalized function F,,, respectively. They
satisfy the following recurrence equations [9]:

fs(@) = afn (f(g)) o
gni1(2,9) = af (f,,(§> +gn(§, %))
ron () (5 2) (2
i (3:5)) -en((2)). @

where the rescaling factor a is chosen to preserve the
normalization condition fh,11(0) = 1, i.e.,, & = 1/f,(1).
Equations (6) and (7) define a renormalization operator
R for transforming a pair of functions (f, g);

(fr)== (). ®

A critical map T, with the nonlinearity and coupling
parameters set to their critical values is attracted to a
fixed map T* under iterations of the renormalization
transformation N,

. iv1 = F*(zi,9:) = f*(x:) + g*(zi, ¥3),
T* . i+t . 9
{ Yit1 = F*(yi, zi)- ®)

Here (f*,g*) is a fixed point of the renormalization op-
erator R with o = 1/f*(1), which satisfies (f*,g*) =
R(f*,g*). Note that the equation for f* is just the fixed-
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point equation in the 1D map case. The 1D fixed function
f* varies depending on the order z [4]. Consequently only
the equation for the coupling fixed function g* is left to
be solved.

However it is not easy to directly solve the equation
for the coupling fixed function. We therefore introduce
a tractable recurrence equation for a “reduced” coupling
function of the coupling function g(z,y) [9], defined by

dg(z,y)
dy

G(z) = (10)

y=z

Differentiating the recurrence equation (7) for g with re-
spect to y and setting y = x, we have

G = 11 (2) ) 26a(2(2) )| & (2)
+an (1 ()1 (5)- o

Then Egs. (6) and (11) define a “reduced” renormal-
ization operator R for transforming a pair of functions

(f,G):
(F)=2(L).

We look for a fixed point (f*,G*) of R, which sat-
isfies (f*,G*) = R(f*,G*). Here G* is just the re-
duced coupling fixed function of g* [ie., G*(z) =
99*(z,y)/0y|y=2). As in the quadratic-maximum case
(z =2) [9], we find three solutions for G*:

(12)

G*(z) =0, (13)
G*(z) = 3 f'(2), (14)
G*(z) = 3[f*(z) - 1). (15)

Here the first solution, corresponding to the reduced cou-
pling fixed function of the zero-coupling fixed function
g9*(z,y) = 0, is associated with the critical behavior at
the zero-coupling critical point, whereas the second and
third solutions dependent on the order z are associated
with the critical behavior at other critical points [9].

Consider an infinitesimal reduced coupling perturba-
tion (0, ®(z)) to a fixed point (f*,G*) of R. We then ex-
amine the evolution of a pair of functions, (f*(z), G*(z)+
®(z)) under the reduced renormalization transformation
R. In the linear approximation we obtain a reduced lin-
earized operator £ of transforming a reduced coupling
perturbation &:

@11 (x) = [L@p)(2)
[ (r ) -2 ()] o 2)
@) @) (2)): o

Here the prime denotes a derivative. If a reduced cou-
pling perturbation ®*(x) satisfies

ve* () = [£2°)(), (17)
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then it is called a reduced coupling eigenperturbation
with coupling eigenvalue (CE) v.

We first show that CE’s are independent of the or-
der z for the second and third solutions (14) and (15) of
G*(z). In case of the second solution G*(z) = 1 f*'(z),
the reduced linearized operator £ becomes a null oper-
ator, independently of z, because the right-hand side of
Eq. (17) becomes zero. Therefore there exist no relevant

CE’s. For the third case G*(z) = %[f*'(:c) —1], Eq. (17)

becomes
v®*(z) = &* (g) + o (f* (2) )

When ®*(z) is a nonzero constant function, i.e., ®*(z) =
¢ (c : nonzero constant), there exists a relevant CE, v = 2,
independently of z.

In the zero-coupling case G*(z) = 0, the eigenvalue
equation (17) becomes

* */ « (T « (T
= () )
« (T * « (T
(e (r(2)
Relevant CE’s of Eq. (19) vary depending on the order
z, as will be seen below.

An eigenfunction ®*(z) can be separated into two com-
ponents, ®*(z) = ®*M)(z) + &*@)(z) with &*M(z) =
ad+alz+---+a:_,z*? and ®*@(z) = a?_,z* 1 +
atz®+---, and the 1D fixed function f* is a polynomial
in 27, i.e., f*(z) = 1 +ciz® + c5,x?* +--- . Substituting

the functions ®*, f*, and f*' into the eigenvalue equation
(19), it has the structure

vai =Y Mu({c'})af,
]

(18)

(19)

k1=0,1,2,... . = (20)

We note that each af (I = 0,1,2,...) in the first and
second terms in the right-hand side of Eq. (19) is involved
only in the determination of coefficients of monomials z*
withk=Il4+mzand k=(z—1)+mz (m=0,1,2,...),
respectively. Therefore any af with { > z — 1 (in the
right-hand side) cannot be involved in the determination
of coefficients of monomials z* with £ < z — 1, which
implies that the eigenvalue equation (20) is of the form

(1) M, 0 $*(1)
(3e) = (52 ) (5%)
where M, is a (z — 1) x (z — 1) matrix, 1) =
(ag,...,at_,), and ®*@ = (a’_,,a%,...). From the re-
ducibility of the matrix M into a semiblock form, it fol-
lows that to determine the eigenvalues of M it is sufficient
to solve the eigenvalue problems for the two submatrices
M, and M, independently.
We first solve the eigenvalue equation of M; (v®*(1) =
M, ®*M), ie.,

(21)

vap =Y Mu({c'}aj, k,1=0,....,z2-2.  (22)
1

Note that this submatrix M; is diagonal. Hence its eigen-
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values are just the diagonal elements:

*!
fa£1) - az—l—k, k

Uk = My = =0,...,z2—2. (23)

Notice that all vx’s are relevant eigenvalues.

Although v is also an eigenvalue of M, (Q;(l), 0) can-
not be an eigenvector of M, because there exists a third
submatrix M3 in M [see Eq. (21)]. Therefore an eigen-
function @ (z) in Eq. (19) with eigenvalue vy is a polyno-
mial with a leading monomial of degree k, i.e., ®;(z) =
Qz(l)(m)+{>;(2)(m) =ajz*+al_;z* 1+alz*+- -, where
a; #0.

We next solve the eigenvalue equation of M, (v®*(?) =
M,®*?) ie.,

ya,’: = ZMM({C‘})G?, k,l =z — 1,Z, cee o (24)
!

Unlike the case of M;, (0,8*()) can be an eigenvec-
tor of M with eigenvalue v. Then its corresponding
function ®*(?)(z) is an eigenperturbation with eigen-
value v, which satisfies Eq. (19). One can easily see
that () (z) = f*'(z) is an eigenfunction with CE
v = 2, which is the zth relevant CE in addition to those
in Eq. (23). It is also found that there exist an infi-
nite number of additional (coordinate change) eigenfunc-
tions ®*(?)(z) = f*'(z)[f*"(z) — z"] with irrelevant CE’s
a™™ (n = 1,2,...), which are associated with coordi-
nate changes [10]. We conjecture that together with the
z (noncoordinate change) relevant CE’s, they give the
whole spectrum of the reduced linearized operator £ of
Eq. (16) and the spectrum is complete.

Consider an infinitesimal coupling perturbation g(z,y)
[= ep(z, )] to a critical map at the zero-coupling critical
point, in which case the map T of Eq. (2) is of the form,

r:{ g 2 fleos =) vevten): gy

where the subscript A* of f denotes the critical value of
the nonlinearity parameter A and £ is an infinitesimal
coupling parameter. The map T for € = 0 is just the
zero-coupling critical map consisting of two uncoupled
1D critical maps f4-. It is attracted to the zero-coupling
fixed map (consisting of two 1D fixed maps f*) under
iterations of the renormalization transformation A of Eq.
(3)-
The reduced coupling function G(z) of g(z,y) is given
by [see Eq. (10)]
G(z) =e®(z)=¢ _6‘_/"_(95511/2 . (26)
Y ly=a
Then e®(x) corresponds to an infinitesimal perturbation

to the reduced zero-coupling fixed function G*(z) = 0
of Eq. (13). The nth image ®,, of ® under the reduced

linearized operator £ of Eq. (16) has the form,
®n(z) = [L"®](2)

z—2
~ Zaku,': 2@) + 12" f*'(z) for large n,
k=0

(27)

since the irrelevant part of ®,, becomes negligibly small
for large n.

The stability multipliers A;, and Az, of the 2"-
periodic orbit of the map T of Eq. (25) are the same
as those of the fixed point of the n-times renormalized
map N™(T) [9], which are given by

Al,n = fn,(-’i’n)’ A2,'n = fn,(in) - 2Gn(-'f"n)~ (28)

Here (fn,Gr) is the nth image of (f4-,G) under the re-
duced renormalization transformation R [i.e., (fn,Gn) =
R"™(fa-,G)], and %, is just the fixed point of f,(z) [i.e.,
2, = fn(&n)] and converges to the fixed point & of the
1D fixed map f*(z) as n — oo. In the critical case
(¢ = 0), Az is equal to Ay, and they converge to
the 1D critical stability multiplier \* = f*'(#). Since
Gn(z) ~ [£2G](x) = e®,(x) for infinitesimally small ¢,
Az, has the form
A2,n jad Al,n - 26@,1
z—2
~ A+ [Zeku,': + e,_12"] for large n, (29)
k=0
where e, = —204®3(2) (k=0,...,2—2)ande,_; =
—2a,_1f*'(2). Therefore the slope S, of Az, at the
zero-coupling point (e = 0) is
z—2

~ Zeku,': +e,—12" for large n. (30)
e=0 k=0

6A2,u
e

S, =

Here the coefficients {ex; ¥ = 0,...,2 — 1} depend on
the initial reduced function ®(z), because the ay’s are
determined only by ®(z). Note that the magnitude of
slope S, increases with n unless all ex’s (k = 0,...,2—1)
are zero.

We choose monomials z! (I = 0,1,2,...) as initial re-
duced functions ®(z), because any smooth function ®(z)
can be represented as a linear combination of monomi-
als by a Taylor series. Expressing ®(z) = z! as a linear
combination of eigenfunctions of £3, we have

®(z) = 2! = @} (z) + a,_1f*'(z)
+) Buf" (@) (2) — 2], (31)

where a; is nonzero for | < z — 1 and zero for I > 2z — 1,

and all B,’s are irrelevant components. Therefore the
slope S,, for large n becomes

o) e +e. 12" for I<z—1,

Sn { e,_12" for I > 2—1. (32)

Note that the growth of S,, for large n is governed by
two CE’s y; and 2 for Il < z — 1 and by one CE v = 2 for
1>2z2-1.

We numerically study the quartic-maximum case (z =
4) in the two coupled 1D maps (25) and confirm the
renormalization results (32). In this case we follow the
periodic orbits of period 2™ up to level n = 15 and ob-
tain the slopes S, of Eq. (30) at the zero-coupling crit-
ical point (A*,0) (A* = 1.594901356228...) when the
reduced function ®(z) is a monomial z' (I = 0,1,...).
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The renormalization result implies that the slopes S,
for [ > z —1 obey a one-term scaling law asymptotically:

S, = dyr?. (33)

We therefore define the growth rate of the slopes as fol-
lows:

— Sn+1
Tl,n = g
n

. (34)

Then it will converge to a constant 7y as n — oo. A
sequence of ry, for ®(z) = z3 is shown in the second
column of Table I. Note that it converges fast to r; = 2.
We have also studied several other reduced-coupling cases
with ®(z) = ' (I > 3). In all higher-order cases studied,
the sequences of 7, , also converge fast to r; = 2.

When !l < z—1, two relevant CE’s govern the growth of
the slopes S,,. We therefore extend the simple one-term
scaling law (33) to a two-term scaling law:

Sp = dyr] + dory, for large n, (35)

where |r1| > |rz|. This is a kind of multiple-scaling law
[11]. Equation (35) gives

Sn+2 = t15n+1 - thn, (36)

where t; = r{ + 72 and t = r172. Then r; and 7, are
solutions of the following quadratic equation,

7'2 - tl’l’ -+- tz = 0 (37)

To evaluate r; and r,, we first obtain ¢; and ¢, from the
Sp’s using Eq. (36):

t = Sn+15n - n+25n—1 g = 572,,+1 - SnSn+2
1= ) =% o o
52 - n+1Sn—1 S% -

n

. (38
n+lsn~1 ( )

Note that Egs. (35)—(38) are valid for large n. In fact,

TABLE 1. In the quartic-maximum case (z = 4), a se-
quence {r; ,} for a one-term scaling law is shown in the sec-
ond column when ®(z) = 2%, and two sequences {r: .} and
{r2,n} for a two-term scaling law are shown in the third and
fourth columns when &(z) = 1.

¥(z) = z° d(z) =1
n Tin Ti,n T2,n
5 1.999 9202 -4.8294558 1.958
6 2.0000093 -4.8294226 2.090
7 1.999994 7 -4.8294098 1.973
8 2.0000004 -4.8294068 2.039
9 1.999999 6 -4.8294058 1.984
10 2.0000000 -4.8294055 2.018
11 2.0000000 -4.8294055 1.992
12 2.0000000 -4.8294054 2.009

the values of t;’s and r;’s (i = 1, 2) depend on the level n.
Thus we denote the values of ¢;’s in Eq. (38) explicitly by
tin—1's, and the values of r;’s obtained from Eq. (37) are
also denoted by r; ,_1’s. Then each of them converges to
a constant as n — oo:

lim ¢;,=¢t;, limr;,=mr, 1=1,2. (39)

n— oo n—o0

The two-term scaling law (35) is very well obeyed. Se-

quences 1 5, and r2 ,, for ®(z) = 1 are shown in the third
and fourth columns of Table I. They converge fast to
ry = a® (¢ = —1.6903...) and r3 , = 2, respectively. We
have also studied two other reduced-coupling cases with
®(z) = z! (I = 1,2). It is found that the sequences r,,
and 73, for | = 1(2) converge fast to their limit values
r1 = o?(2) and r; = 2(a), respectively.
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